1 N ov 1 99 9 Manifolds with singularities accepting a metric of positive scalar curvature

نویسنده

  • Boris Botvinnik
چکیده

We study the question of existence of a Riemannian metric of positive scalar curvature metric on manifolds with the Sullivan-Baas singularities. The manifolds we consider are Spin and simply connected. We prove an analogue of the Gromov-Lawson Conjecture for such manifolds in the case particular type of singularities. We give an affirmative answer when such manifolds with singularities accept a metric of positive scalar curvature in terms of the index of the Dirac operator valued in the corresponding “K -theories with singularities”. The key ideas are based on the construction due to Stolz, some stable homotopy theory, and the index theory for the Dirac operator applied to the manifolds with singularities. As a side-product we compute a homotopy type of the corresponding classifying spectra. AMS Classification 57R15; 53C21, 55T15, 57R90

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Manifolds with singularities accepting a metric of positive scalar curvature

We study the question of existence of a Riemannian metric of positive scalar curvature metric on manifolds with the Sullivan–Baas singularities. The manifolds we consider are Spin and simply connected. We prove an analogue of the Gromov–Lawson Conjecture for such manifolds in the case of particular type of singularities. We give an affirmative answer when such manifolds with singularities accep...

متن کامل

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

ar X iv : d g - ga / 9 40 70 02 v 1 5 J ul 1 99 4 A “ STABLE ” VERSION OF THE GROMOV - LAWSON CONJECTURE

We discuss a conjecture of Gromov and Lawson, later modified by Rosenberg, concerning the existence of positive scalar curvature metrics. It says that a closed spin manifold M of dimension n ≥ 5 has a positive scalar curvature metric if and only if the index of a suitable “Dirac” operator in KOn(C∗(π1(M))), the real K-theory of the group C∗-algebra of the fundamental group of M , vanishes. It i...

متن کامل

A Caveat on the Convergence of the Ricci Flow for Pinched Negatively Curved Manifolds

where r = ∫ Rdμ/ ∫ dμ is the average scalar curvature (R is the scalar curvature) and Ric is the Ricci curvature tensor of h. Hamilton then spectacularly illustrated the success of this method by proving, when n = 3, that if the initial Riemannian metric has strictly positive Ricci curvature it evolves through time to a positively curved Einstein metric h∞ on M . And, because n = 3, such a Riem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993